Comparison and Evaluation of Machine Learning-Based Classification of Hand Gestures Captured by Inertial Sensors

Author:

Stančić IvoORCID,Musić Josip,Grujić Tamara,Vasić Mirela KundidORCID,Bonković Mirjana

Abstract

Gesture recognition is a topic in computer science and language technology that aims to interpret human gestures with computer programs and many different algorithms. It can be seen as the way computers can understand human body language. Today, the main interaction tools between computers and humans are still the keyboard and mouse. Gesture recognition can be used as a tool for communication with the machine and interaction without any mechanical device such as a keyboard or mouse. In this paper, we present the results of a comparison of eight different machine learning (ML) classifiers in the task of human hand gesture recognition and classification to explore how to efficiently implement one or more tested ML algorithms on an 8-bit AVR microcontroller for on-line human gesture recognition with the intention to gesturally control the mobile robot. The 8-bit AVR microcontrollers are still widely used in the industry, but due to their lack of computational power and limited memory, it is a challenging task to efficiently implement ML algorithms on them for on-line classification. Gestures were recorded by using inertial sensors, gyroscopes, and accelerometers placed at the wrist and index finger. One thousand and eight hundred (1800) hand gestures were recorded and labelled. Six important features were defined for the identification of nine different hand gestures using eight different machine learning classifiers: Decision Tree (DT), Random Forests (RF), Logistic Regression (LR), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) with linear kernel, Naïve Bayes classifier (NB), K-Nearest Neighbours (KNN), and Stochastic Gradient Descent (SGD). All tested algorithms were ranged according to Precision, Recall, and F1-score (abb.: P-R-F1). The best algorithms were SVM (P-R-F1: 0.9865, 0.9861, and 0.0863), and RF (P-R-F1: 0.9863, 0.9861, and 0.0862), but their main disadvantage is their unusability for on-line implementations in 8-bit AVR microcontrollers, as proven in the paper. The next best algorithms have had only slightly poorer performance than SVM and RF: KNN (P-R-F1: 0.9835, 0.9833, and 0.9834) and LR (P-R-F1: 0.9810, 0.9810, and 0.9810). Regarding the implementation on 8-bit microcontrollers, KNN has proven to be inadequate, like SVM and RF. However, the analysis for LR has proved that this classifier could be efficiently implemented on targeted microcontrollers. Having in mind its high F1-score (comparable to SVM, RF, and KNN), this leads to the conclusion that the LR is the most suitable classifier among tested for on-line applications in resource-constrained environments, such as embedded devices based on 8-bit AVR microcontrollers, due to its lower computational complexity in comparison with other tested algorithms.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3