Modeling the Dynamic Effects of Human Mobility and Airborne Particulate Matter on the Spread of COVID-19

Author:

Patanarapeelert Klot1ORCID,Chandumrong Rossanan2,Patanarapeelert Nichaphat2

Affiliation:

1. Department of Mathematics, Faculty of Science, Silpakorn Universtiy, Nakhon Pathom 73000, Thailand

2. Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

Identifying the relationship between human mobility, air pollution, and communicable disease poses a challenge for impact evaluation and public health planning. Specifically, Coronavirus disease 2019 (COVID-19) and air pollution from fine particulates (PM2.5), by which human mobility is mediated in a public health emergency. To describe the interplay between human mobility and PM2.5 during the spread of COVID-19, we proposed a nonlinear model of the time-dependent transmission rate as a function of these factors. A compartmental epidemic model, together with daily confirmed case data in Bangkok, Thailand during 2020–2021, was used to estimate the intrinsic parameters that can determine the impact on the transmission dynamic of the two earlier outbreaks. The results suggested a positive association between mobility and transmission, but this was strongly dependent on the context and the temporal characteristics of the data. For the ascending phase of an epidemic, the estimated coefficient of mobility variable in the second wave was greater than in the first wave, but the value of the mobility component in the transmission rate was smaller. Due to the influence of the baseline value and PM2.5, the estimated basic reproduction number of the second wave was higher than that of the first wave, even though mobility had a greater influence. For the descending phase, the value of the mobility component in the second wave was greater, due to the negative value of the estimated mobility coefficient. Despite this scaling effect, the results suggest a negative association between PM2.5 and the transmission rates. Although this conclusion agrees with some previous studies, the true effect of PM2.5 remains inconclusive and requires further investigation.

Funder

Thailand Science Research and Innovation (TSRI) National Science, Research and Innovation Fund

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3