Optimization and Prediction of Different Building Forms for Thermal Energy Performance in the Hot Climate of Cairo Using Genetic Algorithm and Machine Learning

Author:

Khalil Amany1ORCID,Lila Anas M. Hosney2,Ashraf Nouran1ORCID

Affiliation:

1. Department of Architectural Engineering, Faculty of Engineering & Technology, Future University in Egypt, 90th St, New Cairo 11835, Cairo Governorate, Egypt

2. School of Architecture & Environment, College of Arts, Technology & Environment (CATE), University of the West of England, Bristol BS16 1QY, UK

Abstract

The climate change crisis has resulted in the need to use sustainable methods in architectural design, including building form and orientation decisions that can save a significant amount of energy consumed by a building. Several previous studies have optimized building form and envelope for energy performance, but the isolated effect of varieties of possible architectural forms for a specific climate has not been fully investigated. This paper proposes four novel office building form generation methods (the polygon that varies between pentagon and decagon; the pixels that are complex cubic forms; the letters including H, L, U, T; cross and complex cubic forms; and the round family including circular and oval forms) and evaluates their annual thermal energy use intensity (EUI) for Cairo (hot climate). Results demonstrated the applicability of the proposed methods in enhancing the energy performance of the new forms in comparison to the base case. The results of the optimizations are compared together, and the four families are discussed in reference to their different architectural aspects and performance. Scatterplots are developed for the round family (highest performance) to test the impact of each dynamic parameter on EUI. The round family optimization process takes a noticeably high calculation time in comparison to other families. Therefore, an Artificial Neural Network (ANN) prediction model is developed for the round family after simulating 1726 iterations. Training of 1200 configurations is used to predict annual EUI for the remaining 526 iterations. The ANN predicted values are compared against the trained to determine the time saved and accuracy.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3