Application of DFT and TD-DFT on Langmuir Adsorption of Nitrogen and Sulfur Heterocycle Dopants on an Aluminum Surface Decorated with Magnesium and Silicon

Author:

Mollaamin Fatemeh12,Monajjemi Majid3

Affiliation:

1. Department of Food Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150 Kastamonu, Turkey

2. Department of Biology, Faculty of Science, Kastamonu University, 37150 Kastamonu, Turkey

3. Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran

Abstract

In this study, we investigated the abilities of nitrogen and sulfur heterocyclic carbenes of benzotriazole, 2-mercaptobenzothiazole, 8-hydroxyquinoline, and 3-amino-1,2,4-triazole-5-thiol regarding adsorption on an Al-Mg-Si alloy toward corrosion inhibition of the surface. Al-Si(14), Al-Si(19), and Al-Si(21) in the Al-Mg-Si alloy surface with the highest fluctuation in the shielding tensors of the “NMR” spectrum generated by intra-atomic interaction directed us to the most influence in the neighbor atoms generated by interatomic reactions of N → Al, O → Al, and S → Al through the coating and adsorbing process of Langmuir adsorption. The values of various thermodynamic properties and dipole moments of benzotriazole, 2-mercaptobenzothiazole, 8-hydroxyquinoline, and 3-amino-1,2,4-triazole-5-thiol adsorbed on the Al-Mg-Si increased by enhancing the molecular weight of these compounds as well as the charge distribution between organic compounds (electron donor) and the alloy surface (electron acceptor). Finally, this research can build up our knowledge of the electronic structure, relative stability, and surface bonding of various metal alloy surfaces, metal-doped alloy nanosheets, and other dependent mechanisms such as heterogeneous catalysis, friction lubrication, and biological systems.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3