Implicit and Explicit Solvent Effects on the Global Reactivity and the Density Topological Parameters of the Preferred Conformers of Caespitate

Author:

Moreno-Ceballos Andrea1,Castro María Eugenia2ORCID,Caballero Norma A.3,Mammino Liliana4,Melendez Francisco J.1ORCID

Affiliation:

1. Laboratorio de Química Teórica, Centro de Investigación, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif. FCQ10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72570, Mexico

2. Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAP, Edif. IC10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72570, Mexico

3. Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Edif. BIO1, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72570, Mexico

4. Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa

Abstract

In the search to cover the urgent need to combat infectious diseases, natural products have gained attention in recent years. The caespitate molecule, isolated from the plant Helichrysum caespititium of the Asteraceae family, is used in traditional African medicine. Caespitate is an acylphloroglucinol with biological activity. Acylphloroglucinols have attracted attention for treating tuberculosis due to their structural characteristics, highlighting the stabilizing effect of their intramolecular hydrogen bonds (IHBs). In this work, a conformational search for the caespitate was performed using the MM method. Posteriorly, DFT calculations with the APFD functional were used for full optimization and vibrational frequencies, obtaining stable structures. A population analysis was performed to predict the distribution of the most probable conformers. The calculations were performed in the gas phase and solution using the implicit SMD model for water, chloroform, acetonitrile, and DMSO solvents. Additionally, the multiscale ONIOM QM1/QM2 model was used to simulate the explicit solvent. The implicit and explicit solvent effects were evaluated on the global reactivity indexes using the conceptual-DFT approach. In addition, the QTAIM approach was applied to analyze the properties of the IHBs of the most energetically and populated conformers. The obtained results indicated that the most stable and populated conformer is in the gas phase, and chloroform has an extended conformation. However, water, acetonitrile, and DMSO have a hairpin shape. The optimized structures are well preserved in explicit solvent and the interaction energies for the IHBs were lower in explicit than implicit solvents due to non-covalent interactions formed between the solvent molecules. Finally, both methodologies, with implicit and explicit solvents, were validated with 1H and 13C NMR experimental data. In both cases, the results agreed with the experimental data reported in the CDCl3 solvent.

Funder

Vicerrectoría de Investigación y Estudios de Posgrado

PRODEP Academic Group

Publisher

MDPI AG

Reference56 articles.

1. Rolnik, A., and Olas, B. (2021). The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int. J. Mol. Sci., 22.

2. A Review on the Phytoconstituents and Related Medicinal Properties of Plants in the Asteraceae Family;Achika;IOSR J. Appl. Chem.,2014

3. An acylated phloroglucinol with antimicrobial properties from Helichrysum caespititium;Mathekga;Phytochemistry,2000

4. Studies of South African medicinal plants. Part 2. Caespitin, a new phloroglucinol derivative with antimicrobial properties from Helichrysum caespititium;Dekker;S. Afr. J. Chem.,1983

5. Mapaura, A., and Timberlake, J. (2004). A Checklist of Zimbabwean Vascular Plants Southern African Botanical Diversity Network Report No. 33, SABONET Publications.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3