Oxygen Pressure Influence on Properties of Nanocrystalline LiNbO3 Films Grown by Laser Ablation

Author:

Vakulov ZakharORCID,Zamburg EvgenyORCID,Khakhulin Daniil,Geldash Andrey,Golosov Dmitriy A.,Zavadski Sergey M.,Miakonkikh Andrey V.ORCID,Rudenko Konstantin V.,Dostanko Anatoliy P.,He Zhubing,Ageev Oleg A.ORCID

Abstract

Energy conversion devices draw much attention due to their effective usage of energy and resulting decrease in CO2 emissions, which slows down the global warming processes. Fabrication of energy conversion devices based on ferroelectric and piezoelectric lead-free films is complicated due to the difficulties associated with insufficient elaboration of growth methods. Most ferroelectric and piezoelectric materials (LiNbO3, BaTiO3, etc.) are multi-component oxides, which significantly complicates their integration with micro- and nanoelectronic technology. This paper reports the effect of the oxygen pressure on the properties of nanocrystalline lithium niobate (LiNbO3) films grown by pulsed laser deposition on SiO2/Si structures. We theoretically investigated the mechanisms of LiNbO3 dissociation at various oxygen pressures. The results of x-ray photoelectron spectroscopy study have shown that conditions for the formation of LiNbO3 films are created only at an oxygen pressure of 1 × 10−2 Torr. At low residual pressure (1 × 10−5 Torr), a lack of oxygen in the formed films leads to the formation of niobium oxide (Nb2O5) clusters. The presented theoretical and experimental results provide an enhanced understanding of the nanocrystalline LiNbO3 films growth with target parameters using pulsed laser deposition for the implementation of piezoelectric and photoelectric energy converters.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3