Evaluation of Different Bottom-up Routes for the Fabrication of Carbon Dots

Author:

Crista Diana M. A.,Esteves da Silva Joaquim C. G.ORCID,Pinto da Silva LuísORCID

Abstract

Carbon dots (CDs) are carbon-based nanoparticles with very attractive luminescence features. Furthermore, their synthesis by bottom-up strategies is quite flexible, as tuning the reaction precursors and synthesis procedures can lead to an endless number of CDs with distinct properties and applications. However, this complex variability has made the characterization of the structural and optical properties of the nanomaterials difficult. Herein, we performed a systematic evaluation of the effect of three representative bottom-up strategies (hydrothermal, microwave-assisted, and calcination) on the properties of CDs prepared from the same precursors (citric acid and urea). Our results revealed that these synthesis routes led to nanoparticles with similar sizes, identical excitation-dependent blue-to-green emission, and similar surface-functionalization. However, we have also found that microwave and calcination strategies are more efficient towards nitrogen-doping than hydrothermal synthesis, and thus, the former routes are able to generate CDs with significantly higher fluorescence quantum yields than the latter. Furthermore, the different synthesis strategies appear to have a role in the origin of the photoluminescence of the CDs, as hydrothermal-based nanoparticles present an emission more dependent on surface states, while microwave- and calcination-based CDs present an emission with more contributions from core states. Furthermore, calcination and microwave routes are more suitable for high-yield synthesis (~27–29%), while hydrothermal synthesis present almost negligible synthesis yields (~2%). Finally, life cycle assessment (LCA) was performed to investigate the sustainability of these processes and indicated microwave synthesis as the best choice for future studies.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3