Identification of Differential Drought Response Mechanisms in Medicago sativa subsp. sativa and falcata through Comparative Assessments at the Physiological, Biochemical, and Transcriptional Levels

Author:

Singer Stacy D.,Subedi Udaya,Lehmann Madeline,Burton Hughes Kimberley,Feyissa Biruk A.ORCID,Hannoufa AbdelaliORCID,Shan Bin,Chen Guanqun,Kader Kazi,Ortega Polo Rodrigo,Schwinghamer Timothy,Kaur Dhariwal Gaganpreet,Acharya Surya

Abstract

Alfalfa (Medicago sativa L.) is an extensively grown perennial forage legume, and although it is relatively drought tolerant, it consumes high amounts of water and depends upon irrigation in many regions. Given the progressive decline in water available for irrigation, as well as an escalation in climate change-related droughts, there is a critical need to develop alfalfa cultivars with improved drought resilience. M. sativa subsp. falcata is a close relative of the predominantly cultivated M. sativa subsp. sativa, and certain accessions have been demonstrated to exhibit superior performance under drought. As such, we endeavoured to carry out comparative physiological, biochemical, and transcriptomic evaluations of an as of yet unstudied drought-tolerant M. sativa subsp. falcata accession (PI 641381) and a relatively drought-susceptible M. sativa subsp. sativa cultivar (Beaver) to increase our understanding of the molecular mechanisms behind the enhanced ability of falcata to withstand water deficiency. Our findings indicate that unlike the small number of falcata genotypes assessed previously, falcata PI 641381 may exploit smaller, thicker leaves, as well as an increase in the baseline transcriptional levels of genes encoding particular transcription factors, protective proteins, and enzymes involved in the biosynthesis of stress-related compounds. These findings imply that different falcata accessions/genotypes may employ distinct drought response mechanisms, and the study provides a suite of candidate genes to facilitate the breeding of alfalfa with enhanced drought resilience in the future.

Funder

Agriculture and Agri-Food Canada

Beef Cattle Research Council

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3