Small “Nested” Introgressions from Wild Thinopyrum Species, Conferring Effective Resistance to Fusarium Diseases, Positively Impact Durum Wheat Yield Potential

Author:

Kuzmanović LjiljanaORCID,Giovenali Gloria,Ruggeri RobertoORCID,Rossini FrancescoORCID,Ceoloni CarlaORCID

Abstract

Today wheat cultivation is facing rapidly changing climate scenarios and yield instability, aggravated by the spreading of severe diseases such as Fusarium head blight (FHB) and Fusarium crown rot (FCR). To obtain productive genotypes resilient to stress pressure, smart breeding approaches must be envisaged, including the exploitation of wild relatives. Here we report on the assessment of the breeding potential of six durum wheat-Thinopyrum spp. recombinant lines (RLs) obtained through chromosome engineering. They are characterized by having 23% or 28% of their 7AL chromosome arm replaced by a “nested” alien segment, composed of homoeologous group 7 chromosome fractions from Th. ponticum and Th. elongatum (=7el1L + 7EL) or from different Th. ponticum accessions (=7el1L + 7el2L). In addition to the 7el1L genes Lr19 + Yp (leaf rust resistance, and yellow pigment content, respectively), these recombinant lines (RLs) possess a highly effective QTL for resistance to FHB and FCR within their 7el2L or 7EL portion. The RLs, their null segregants and well-adapted and productive durum wheat cultivars were evaluated for 16 yield-related traits over two seasons under rainfed and irrigated conditions. The absence of yield penalties and excellent genetic stability of RLs was revealed in the presence of all the alien segment combinations. Both 7el2L and 7EL stacked introgressions had positive impacts on source and sink yield traits, as well as on the overall performance of RLs in conditions of reduced water availability. The four “nested” RLs tested in 2020 were among the top five yielders, overall representing good candidates to be employed in breeding programs to enhance crop security and safety.

Funder

Partnership for Research and Innovation in the Mediterranean Area

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3