Dry Matter Gains in Maize Kernels Are Dependent on Their Nitrogen Accumulation Rates and Duration during Grain Filling

Author:

Olmedo Pico Lía B.ORCID,Vyn Tony J.ORCID

Abstract

Progressive N assimilation by maize kernels may constrain dry matter (DM) accumulation and final kernel weights (KW). We sought to better understand whole-plant and kernel N mechanisms associated with incremental DM and N accumulation patterns in kernels during grain fill. Maize was grown with multiple fertilizer N rates and N timings or plant densities to achieve a wide N availability gradient. Whole-plant DM and N sampling enabled determination of apparent N nutrition sufficiency at flowering (NNIR1) and when linear-fill began (NNIR3). Linear-plateau, mixed-effects models were fitted to kernel DM and N accumulation data collected weekly from early R3. Higher N supply, regardless of application timing or plant density, increased grain-fill duration (GFD) and, more inconsistently, effective grain-filling rate (EGFR). Kernels accumulated DM and N for similar durations. Both final KW and kernel N content increased consistently with N availability mostly because of higher kernel N accumulation rates (KNAR) and duration (KNAD). Both NNIR1 and NNIR3 were positively associated with KNAD and KNAR, and less strongly with EGFR. These results confirm the direct role of kernel N accumulation, in addition to prior NNI, in limiting KW gain rates and duration during grain filling.

Funder

Monsanto Company

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3