Evaluating the Endophytic Activities of Beauveria bassiana on the Physiology, Growth, and Antioxidant Activities of Extracts of Lettuce (Lactuca sativa L.)

Author:

Macuphe NeoORCID,Oguntibeju Oluwafemi OmoniyiORCID,Nchu FelixORCID

Abstract

Endophytic entomopathogens have growth promoting, nutrient fortifying, and anti-insect properties that could improve the yield and quality of lettuce (Lactuca sativa L.). Lactuca sativa is a vegetable crop with high demand; however, it is susceptible to aphid infestations. This study’s objectives were to assess the pathogenicity of Beauveria bassiana (strain: SM3) (Bals.) Vuil. (Hypocreales) against Myzus persicae Sulzer, tissue colonization of lettuce by conidia of B. bassiana, as well as the effects of fungal inoculation on growth, tissue nutrient content, and proximate composition of the lettuce plants. Furthermore, the involvement of tissue nutrients in mediating the influence of endophytic fungus on the plant traits was examined. Insects and plants were exposed to four fungal conidial concentrations: 0, 1 × 106, 1 × 107 and 1 × 108 conidia mL−1 in an anti-insect bioassay and a greenhouse experiment, respectively. The B. bassiana strain was pathogenic against M. persicae, inducing mean insect mortality of 78% at the highest concentration (1 × 108 conidia mL−1). The B. bassiana endophytically colonized up to 76% of plants exposed to 1 × 108 conidia mL−1. Crown size and plant height varied significantly among treatments. However, the plant fresh and dry weights and nutrient elements N, P, K, Ca, and Mg did not vary significantly among treatments. Among the plant macronutrients assessed, only tissue carbon content was significantly (p < 0.01) affected by conidial treatments. The tissue C and Cu contents significantly correlated with the antioxidant capacity of the lettuce plants. Most of the micronutrients, viz. Mn, Fe, Cu, and B were remarkably higher (p < 0.05) in the fungus-treated plants than in the control plants. The antioxidant capacity (FRAP and TEAC) of plant extracts varied significantly (p < 0.001) among treatments, with the highest conidial treatment yielding the most increased antioxidant activity. In conclusion, the B. bassiana strain was endophytic to lettuce, pathogenic against M. persicae, and induced increased micro-nutrient tissue contents and antioxidant activities. This study demonstrated that B. bassiana could be potentially used in the biofortification of nutritive and medicinal qualities of plants.

Funder

Cape Peninsula University of Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3