Response of Chlorophyll Fluorescence Characteristics and Dissolved Organic Matter for Marine Diatom Skeletonema dohrnii under Stress from Penicillin and Zn2+

Author:

Liu Yang,Liu Xiaofang,Sun JunORCID

Abstract

Skeletonema dohrnii is a good model diatom for studying environmental stress and has promising applications and prospects in various fields. Antibiotics and heavy metals are commonly exceeded in the nearshore marine habitats. In this work, we investigated the effects of an antibiotic (penicillin, 2 µg/L) and a heavy metal ion (Zn2+, 10 µmol/L) stress on marine diatom S. dohrnii, mainly using excitation-emission matrices (EEMs) fluorescence methods and OJIP test. Results indicated that algal cells grown with the antibiotic showed higher biomass, specific growth rate, doubling time, chlorophyll a, and chlorophyll fluorescence variables. Moreover, excess zinc had negative effects on S. dohrnii. We found that zinc not only inhibited the relative photosynthetic electron transfer efficiency but also reduced the Chl a content, which ultimately affected algal growth and organic matter production. In addition, the combined effect of penicillin and Zn2+ further affected the physiological state of S. dohrnii. The dissolved organic matter (DOM) characteristics of the four cultures were also different, including fluorescence indices (fluorescence index, biological index, β/α, and humification index) and fluorescence peaks (peaks A, C, M and T). In brief, characterization of chlorophyll fluorescence characteristics and DOM-related variables are important for understanding the effects of environmental stress on microalgae.

Funder

National Natural Science Foundation of China

Changjiang Scholar Program of Chinese Ministry of Education

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3