Effects of Agronomic Practices on the Severity of Sweet Basil Downy Mildew (Peronospora belbahrii)

Author:

Omer Chen,Nisan Ziv,Rav-David Dalia,Elad YigalORCID

Abstract

Downy mildew (caused by Peronospora belbahrii) is a severe disease of sweet basil (Ocimum basilicum) crops around the world. We examined cultural methods for reducing the severity of sweet basil downy mildew (SBDM) under commercial conditions in greenhouses and walk-in tunnels. The effects of the orientation of walk-in tunnels, air circulation in greenhouses, plant density, and soil mulch were tested. SBDM was less severe in the tunnels that were oriented north-south than in those oriented east-west, but the yields in both types of tunnels were similar. Increased air circulation reduced SBDM severity, but did not affect yield. Gray or transparent polyethylene mulch reduced SBDM severity and, in most cases, increased yield relative to bare soil/growth medium. Yellow polyethylene mulch provided a smaller amount of control. The combination of increased air circulation and yellow polyethylene mulch provided synergistic SBDM control, whereas no synergism was observed when we combined increased air circulation with the other two types of mulch. Planting at half the usual density reduced disease severity. The reduced plant density was associated with reduced yield in the greenhouses, but not in the tunnels. All of the tested methods provided an intermediate level of SBDM control that varied among the different experiments.

Funder

Chief Scientists of the Ministry of Agriculture

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference36 articles.

1. Cultural control of plant diseases: a historical perspective

2. Cultural approaches for disease management: Present status and future perspectives;Katan;J. Plant Pathol.,2010

3. Effects of Plant Spacing and Cultivar on Incidence of Botrytis Fruit Rot in Annual Strawberry

4. Botrytis cinerea in greenhouse vegetables: chemical, cultural, physiological and biological controls and their integration

5. Epidemiology of Botrytis cinerea diseases in greenhouses;Dik,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3