Anti-Allergic, Anti-Inflammatory, and Anti-Hyperglycemic Activity of Chasmanthe aethiopica Leaf Extract and Its Profiling Using LC/MS and GLC/MS

Author:

Ayoub Iriny M.ORCID,Korinek MichalORCID,El-Shazly Mohamed,Wetterauer Bernhard,El-Beshbishy Hesham A.ORCID,Hwang Tsong-LongORCID,Chen Bing-Hung,Chang Fang-RongORCID,Wink MichaelORCID,Singab Abdel Nasser B.,Youssef Fadia S.ORCID

Abstract

This study aims to comprehensively explore the phytoconstituents as well as investigate the different biological activities of Chasmanthe aethiopica (Iridaceae) for the first time. Metabolic profiling of the leaf methanol extract of C. aethiopica (CAL) was carried out using HPLC-PDA-ESI-MS/MS. Twenty-nine compounds were annotated belonging to various phytochemical classes including organic acids, cinnamic acid derivatives, flavonoids, isoflavonoids, and fatty acids. Myricetin-3-O-rhamnoside was the major compound identified. GLC/MS analysis of the n-hexane fraction (CAL-A) resulted in the identification of 45 compounds with palmitic acid (16.08%) and methyl hexadecanoic acid ester (11.91%) representing the major constituents. CAL-A exhibited a potent anti-allergic activity as evidenced by its potent inhibition of β-hexosaminidase release triggered by A23187 and IgE by 72.7% and 48.7%, respectively. Results were comparable to that of dexamethasone (10 nM) in the A23187 degranulation assay showing 80.7% inhibition for β-hexosaminidase release. Both the n-hexane (CAL-A) and dichloromethane (CAL-B) fractions exhibited potent anti-inflammatory activity manifested by the significant inhibition of superoxide anion generation and prohibition of elastase release. CAL showed anti-hyperglycemic activity in vivo using streptozotocin-induced diabetic rat model by reducing fasting blood glucose levels (FBG) by 53.44% as compared with STZ-treated rats along with a substantial increase in serum insulin by 22.22%. Molecular modeling studies indicated that dicaffeoylquinic acid showed the highest fitting with free binding energies (∆G) of −47.24 and −60.50 Kcal/mol for human α-amylase and α-glucosidase, respectively confirming its anti-hyperglycemic activity. Thus, C. aethiopica leaf extract could serve as an effective antioxidant natural remedy combating inflammation, allergy, and hyperglycemia.

Funder

This work was supported by grants from the Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3