Antibacterial, Antihemolytic, Cytotoxic, Anticancer, and Antileishmanial Effects of Ajuga bracteosa Transgenic Plants

Author:

Rubnawaz SaminaORCID,Okla Mohammad K.,Akhtar NosheenORCID,Khan Imdad UllahORCID,Bhatti Muhammad ZeeshanORCID,Duong Hong-Quan,El-Tayeb Mohamed A.,Elbadawi Yahaya B.,Almaary Khalid S.,Moussa Ihab M.,Abbas Zahid Khurshid,Mirza BushraORCID

Abstract

Herbal and traditional medicines can play a pivotal role in combating cancer and neglected tropical diseases. Ajuga bracteosa, family Lamiaceae, is an important medicinal plant. The genetic transformation of A. bracteosa with rol genes of Agrobacterium rhizogenes further enhances its metabolic content. This study aimed at undertaking the molecular, phytochemical, and in vitro biological analysis of A. bracteosa extracts. We transformed the A. bracteosa plant with rol genes and raised the regenerants from the hairy roots. Transgenic integration and expression of rolB were confirmed by conventional polymerase chain reaction (PCR) and qPCR analysis. The methanol: chloroform crude extracts of wild-type plants and transgenic regenerants were screened for in vitro antibacterial, antihemolytic, cytotoxic, anticancer, and leishmanial activity. Among all plants, transgenic line 3 (ABRL3) showed the highest expression of the rolB gene. Fourier transform infra-red (FTIR) analysis confirmed the enhanced number of functional groups of active compounds in all transgenic lines. Moreover, ABRL3 exhibited the highest antibacterial activity, minimum hemolytic activity (CC50 = 7293.05 ± 7 μg/mL) and maximum antileishmanial activity (IC50 of 56.16 ± 2 μg/mL). ABRL1 demonstrated the most prominent brine shrimp cytotoxicity (LD5039.6 ± 4 μg/mL). ABRL3 was most effective against various human cancer cell lines with an IC50 of 57.1 ± 2.2 μg/mL, 46.2 ± 1.1 μg/mL, 72.4 ± 1.3 μg/mL, 73.3 ± 2.1 μg/mL, 98.7 ± 1.6 μg/mL, and 97.1 ± 2.5 μg/mL against HepG2, LM3, A549, HT29, MCF-7, and MDA-MB-231, respectively. Overall, these transgenic extracts may offer a cheaper therapeutic source than the more expensive synthetic drugs.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3