Genetic Diversity and Structure of Rear Edge Populations of Sorbus aucuparia (Rosaceae) in the Hyrcanian Forest

Author:

Yousefzadeh Hamed,Raeisi Shahla,Esmailzadeh Omid,Jalali Gholamali,Nasiri MalekORCID,Walas ŁukaszORCID,Kozlowski GregorORCID

Abstract

Sorbus aucuparia (Rosaceae) is a small tree species widely distributed in Eurasia. The Hyrcanian forest is the southernmost distribution limit of this species. Severe habitat degradation and inadequate human interventions have endangered the long-term survival of this species in this region, and it is necessary to develop and apply appropriate management methods to prevent the loss of its genetic diversity. In this study, we used 10 SSR markers in order to evaluate the genetic diversity of this taxon. Leaf samples were collected from five known populations of S. aucuparia throughout its distribution area in the Hyrcanian forest. Expected heterozygosity ranged from 0.61 (ASH) to 0.73, and according to the M-ratio, all populations showed a significant reduction in effective population size, indicating a genetic bottleneck. Global FST was not statistically significant and attained the same values with and without excluding null alleles (ENA) correction (FST = 0.12). Bayesian analysis performed with STRUCTURE defined two genetic clusters among the five known populations, while the results of discriminant analysis of principal components (DAPC) identified three distinct groups. The average proportion of migrants was 22. In general, the gene flow was asymmetrical, with the biggest differences between immigration and emigration in Barzekoh and Asbehriseh. The Mantel test showed that there was no significant correlation between genetic distance (FST) and geographic distance in S. aucuparia. The best pathway for theoretical gene flow is located across the coast of the Caspian Sea and significant spatial autocorrelation was observed in only one population. In order to reduce the extinction risk of very small and scattered populations of S. aucuparia in the Hyrcanian forest, it is very important to establish and/or enhance the connectivity through habitat restoration or genetic exchange.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference64 articles.

1. Assessing Biotic and Abiotic Effects on Biodiversity Index Using Machine Learning

2. Le refuge caspiens et son importance en biogéographie;Leestmans;Linneana Belg.,2005

3. Geobotanical Foundations of the Middle East;Zohary,1973

4. Conservation of threatened relict trees through living ex situ collections: lessons from the global survey of the genus Zelkova (Ulmaceae)

5. Wingnuts (Pterocarya) & Walnut Family: Relict Trees: Linking the Past, Present and Future;Kozlowski,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3