Investigation of Quinoa Seeds Fractions and Their Application in Wheat Bread Production

Author:

Coţovanu IonicaORCID,Ungureanu-Iuga MădălinaORCID,Mironeasa SilviaORCID

Abstract

The present study aimed to investigate the influence of quinoa fractions (QF) on the chemical components of wheat flour (WF), dough rheological properties, and baking performance of wheat bread. The microstructure and molecular conformations of QF fractions were dependent to the particle size. The protein, lipids, and ash contents of composite flours increased with the increase of QF addition level, while particle size (PS) decreased these parameters as follows: Medium ˃ Small ˃ Large, the values being higher compared with the control (WF). QF addition raised dough tenacity from 86.33 to 117.00 mm H2O, except for the small fraction, and decreased the extensibility from 94.00 to 26.00 mm, while PS determined an irregular trend. The highest QF addition levels and PS led to the highest dough viscoelastic moduli (55,420 Pa for QL_20, 65245 Pa for QM_20 and 48305 Pa for QS_20, respectively). Gradual increase of QF determined dough hardness increase and adhesiveness decrease. Bread firmness, springiness, and gumminess rises were proportional to the addition level. The volume, elasticity, and porosity of bread decreased with QF addition. Flour and bread crust and crumb color parameters were also influenced by QF addition with different PS.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

1. Whole meal and white flour from Argentine wheat genotypes: Mineral and arabinoxylan differences

2. Optimization of grape peels particle size and flour substitution in white wheat flour dough;Mironeasa;Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind.,2019

3. Assessment of essential amino acids in wheat proteins: A case study;Saleem Khan;J. Biodivers. Environ. Sci.,2014

4. Health/Nutrition food claims and low-fat food purchase: Projected personality influence in young consumers

5. Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by Near-Infrared Transmission spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3