Preparation of Chlorophyll Nanoemulsion from Pomelo Leaves and Its Inhibition Effect on Melanoma Cells A375

Author:

Liu Man-Hai,Li Yi-Fen,Chen Bing-HueiORCID

Abstract

Pomelo (Citrus grandis), an important fruit crop grown in tropical and subtropical areas, is cultivated mainly in Asian countries. The dominant pigment in pomelo leaves, chlorophyll, has been reported to possess many biological activities such as antioxidant, anti-inflammation and anticancer. The objectives of this study were to determine chlorophylls in Pomelo leaves by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and to encapsulate the isolated chlorophylls from preparative column chromatography into a nanoemulsion system for elucidating the inhibition mechanism on the growth of melanoma cells A375. The results showed that chlorophyll a and chlorophyll b could be separated within 25 min by using a C18 column and a gradient ternary mobile phase of acetone, acetonitrile and methanol. Pomelo leaves mainly contained chlorophyll a (2278.3 μg/g) and chlorophyll b (785.8 μg/g). A highly stable chlorophyll nanoemulsion was prepared with the mean particle size being 13.2 nm as determined by a dynamic light scattering (DLS) method. The encapsulation efficiency of chlorophyll nanoemulsion was 99%, while the zeta potential was −64.4 mV. In addition, the chlorophyll nanoemulsion possessed high thermal stability up to 100 °C and remained stable over a 90-day storage period at 4 °C. Western blot analysis revealed that chlorophyll nanoemulsion and extract could upregulate p53, p21, cyclin B and cyclin A as well as downregulate CDK1 and CDK2 in a concentration-dependent manner for inhibition of melanoma cells A375. Furthermore, chlorophyll nanoemulsion and extract could upregulate Bax and cytochrome C and downregulate Bcl-2, leading to activation of caspase-9, caspase-8 and caspase-3 for the induction of cell apoptosis. Compared to chlorophyll extract, chlorophyll nanoemulsion was more effective in inhibiting the growth of melanoma cells A375.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3