Abstract
Frost tolerance (FT) is generally acquired after exposure of plants to low, but non-freezing temperatures, where it is associated with the accumulation of COR proteins. The aim of the study was to reveal the effect of different temperature treatments (25, 17, 9 and 4 °C) on accumulation of cold-regulated dehydrins, dry weight content, and the development of FT in five wheat cultivars of different frost-tolerances in detail. The levels of cold-regulated dehydrins, WCS120 proteins in wheat were determined by immunoblot analysis, probed with an anti-dehydrin antibody. The lower the growth temperature: the higher the level of frost tolerance, dry weight content, and dehydrin accumulation, in all cultivars. There was a significant correlation between the level of induced FT and the accumulation of WCS120 proteins in cultivars grown at lower temperatures (9 and 4 °C). Moreover, the highly frost-tolerant wheat cultivars (as opposed to the lower-tolerant) accumulated higher levels of WCS120 proteins at 17 °C, a temperature at which it was not possible to differentiate between them via a frost test. Here, we demonstrated the possibility to distinguish differently frost-tolerant cultivars grown at different temperatures by the accumulation of different members of WCS120 family.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献