A Plant Based Modified Biostimulant (Copper Chlorophyllin), Mediates Defense Response in Arabidopsis thaliana under Salinity Stress

Author:

Islam Md Tariqul,Ckurshumova Wenzi,Fefer Michael,Liu Jun,Uddin Wakar,Rosa CristinaORCID

Abstract

To date, managing salinity stress in agriculture relies heavily on development of salt tolerant plant varieties, a time-consuming process particularly challenging for many crops. Plant based biostimulants (PBs) that enhance plant defenses under stress can potentially address this drawback, as they are not crop specific and are easy to apply in the field. Unfortunately, limited knowledge about their modes of action makes it harder to utilize them on a broader scale. Understanding how PBs enhance plant defenses at cellular and molecular levels, is a prerequisite for the development of sustainable management practices utilizing biostimulants to improve crop health. In this study we elucidated the protective mechanism of copper chlorophyllin (Cu-chl), a PB, under salinity stress. Our results indicate that Cu-chl exerts protective effects primarily by decreasing oxidative stress through modulating cellular H2O2 levels. Cu-chl treated plants increased tolerance to oxidative stress imposed by an herbicide, methyl viologen dichloride hydrate as well, suggesting a protective role against various sources of reactive oxygen species (ROS). RNA-Seq analysis of Cu-chl treated Arabidopsis thaliana seedlings subjected to salt stress identified genes involved in ROS detoxification, and cellular growth.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3