Abstract
Plants are sessile in nature and they perceive and react to environmental stresses such as abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species (ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and to interfere with hormone signaling via several post-translational modifications (PTMs). Protein carbonylation (PC) is a non-enzymatic and irreversible PTM induced by ROS. The non-enzymatic feature of the carbonylation reaction has slowed the efforts to identify functions regulated by PC in plants. Yet, in prokaryotic and animal cells, studies have shown the relevance of protein carbonylation as a signal transduction mechanism in physiological processes including hydrogen peroxide sensing, cell proliferation and survival, ferroptosis, and antioxidant response. In this review, we provide a detailed update on the most recent findings pertaining to the role of PC and its implications in various physiological processes in plants. By leveraging the progress made in bacteria and animals, we highlight the main challenges in studying the impacts of carbonylation on protein functions in vivo and the knowledge gap in plants. Inspired by the success stories in animal sciences, we then suggest a few approaches that could be undertaken to overcome these challenges in plant research. Overall, this review describes the state of protein carbonylation research in plants and proposes new research avenues on the link between protein carbonylation and plant redox biology.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献