Photosynthetic Properties of Co-Occurring Pioneer Species on Volcanically Devastated Sites in Miyake-jima Island, Japan

Author:

Zhang XiulongORCID,Li Hao,Hu Xiaoxing,Zheng Pengyao,Hirota Mitsuru,Kamijo TakashiORCID

Abstract

Pioneer species differing in their inherent ecological characteristics (e.g., N-fixing ability, photosynthetic pathway) can have a large impact on local ecosystems in the early stages of volcanic succession. However, it remains unclear as to how these pioneer species adapt to the extreme environment of volcanically devastated sites in terms of ecophysiological leaf traits. In this study, we compared the leaf traits (including morphological, physiological) of three co-occurring pioneer species, including a C4 non-N-fixing grass, a C3 N-fixing tree, and a C3 non-N-fixing herb from a newly created (18 years after eruption) volcanically devastated site in Miyake-jima, Japan. Our results showed that three pioneer species have different sets of leaf traits that are associated with their ecophysiological growth advantages, respectively. Miscanthus condensatus shows the highest light-saturated photosynthetic rate (Amax). The higher Amax were partially the result of higher water use efficiency (WUE) and photosynthetic N-use efficiency (PNUE). The PNUE in M. condensatus appears to be high, even for a C4 grass. Alnus sieboldiana rely on its N-fixing ability, has a higher leaf N content (Narea) that compensates for its photosynthetic machinery (Rubisco), and further ensures its photosynthetic capacity. Fallopia japonica var. hachidyoensis has a higher leaf mass per area (LMA), chlorophyll content (Chl), and maximum quantum yield of PSII (Fv/Fm), demonstrating its higher light capturing ability. These results make it possible to predict certain ecological processes that take place in the early stages of volcanic succession resulting from ecological characteristics and from some key leaf traits of pioneer species. It also provides a theoretical basis for species selection and species combination for volcanic ecological restoration.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference64 articles.

1. Volcanic disturbances and ecosystem recovery;Del Moral;Ecosyst. World,1999

2. Environmental and agricultural significance of volcanic ash soils;Shoji;Glob. Environ. Res.,2002

3. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions

4. Species attributes in early primary succession on volcanoes

5. Plant Ecological Strategies: Some Leading Dimensions of Variation Between Species

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3