Abstract
The notion of a potential-growth indicator came to being in the field of matrix population models long ago, almost simultaneously with the pioneering Leslie model for age-structured population dynamics, although the term has been given and the theory developed only in recent years. The indicator represents an explicit function, R(L), of matrix L elements and indicates the position of the spectral radius of L relative to 1 on the real axis, thus signifying the population growth, or decline, or stabilization. Some indicators turned out to be useful in theoretical layouts and practical applications prior to calculating the spectral radius itself. The most senior (1994) and popular indicator, R0(L), is known as the net reproductive rate, and we consider two others, R1(L) and RRT(A), developed later on. All the three are different in terms of their simplicity and the level of generality, and we illustrate them with a case study of Calamagrostis epigeios, a long-rhizome perennial weed actively colonizing open spaces in the temperate zone. While the R0(L) and R1(L) fail, respectively, because of complexity and insufficient generality, the RRT(L) does succeed, justifying the merit of indication.
Funder
Russian Foundation for Basic Research
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference32 articles.
1. Matrix Population Models: Construction, Analysis and Interpretation;Caswell,2001
2. Projection matrices revisited: a potential-growth indicator and the merit of indication
3. Structural Models: An Introduction to the Theory of Directed Graphs;Harary,1965
4. Matrix Theory;Gantmacher,1959
5. Matrix Analysis;Horn,1990
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献