Multiclass Classification of Hepatic Anomalies with Dielectric Properties: From Phantom Materials to Rat Hepatic Tissues

Author:

Yilmaz TubaORCID

Abstract

Open-ended coaxial probes can be used as tissue characterization devices. However, the technique suffers from a high error rate. To improve this technology, there is a need to decrease the measurement error which is reported to be more than 30% for an in vivo measurement setting. This work investigates the machine learning (ML) algorithms’ ability to decrease the measurement error of open-ended coaxial probe techniques to enable tissue characterization devices. To explore the potential of this technique as a tissue characterization device, performances of multiclass ML algorithms on collected in vivo rat hepatic tissue and phantom dielectric property data were evaluated. Phantoms were used for investigating the potential of proliferating the data set due to difficulty of in vivo data collection from tissues. The dielectric property measurements were collected from 16 rats with hepatic anomalies, 8 rats with healthy hepatic tissues, and in house phantoms. Three ML algorithms, k-nearest neighbors (kNN), logistic regression (LR), and random forests (RF) were used to classify the collected data. The best performance for the classification of hepatic tissues was obtained with 76% accuracy using the LR algorithm. The LR algorithm performed classification with over 98% accuracy within the phantom data and the model generalized to in vivo dielectric property data with 48% accuracy. These findings indicate first, linear models, such as logistic regression, perform better on dielectric property data sets. Second, ML models fitted to the data collected from phantom materials can partly generalize to in vivo dielectric property data due to the discrepancy between dielectric property variability.

Funder

Scientific and Technological Research Council of Turkey

Istanbul Technical University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies

2. Probe Characteristics and Specifications, Keysight N1501A, Dielectric Probe Kit 10 MHz to 50 GHzhttps://literature.cdn.keysight.com/litweb/pdf/5992-0264EN.pdf?id=2605692

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3