An Innovative Supervised Classification Algorithm for PolSAR Image Based on Mixture Model and MRF

Author:

Liu Mingliang,Deng Yunkai,Han Chuanzhao,Hou WentaoORCID,Gao YaoORCID,Wang Chunle,Liu Xiuqing

Abstract

The Wishart mixture model is an effective tool for characterizing the statistical distribution of polarimetric synthetic aperture radar (PolSAR) data. However, due to the difficulty in determining the equivalent number of looks, the Wishart mixture model has some problems in terms of practicality. In addition, the flexibility of the Wishart mixture model needs to be improved for complicated scenes. To improve the practicality and flexibility, a new mixture model named the relaxed Wishart mixture model (RWMM) is proposed. In RWMM, the equivalent number of looks is no longer considered a constant for the whole PolSAR image but a variable that varies between different clusters. Next, an innovative algorithm named RWMM-Markov random field (RWMM-MRFt) for supervised classification is proposed. A new selection criterion for adaptive neighborhood systems is proposed in the algorithm to improve the classification performance. The new criterion makes effective use of PolSAR scattering information to select the most suitable neighborhood for each center pixel in PolSAR images. Three datasets, including one simulated image and two real PolSAR images, are utilized in the experiment. The maximum likelihood classification results demonstrate the flexibility of the proposed RWMM for modeling PolSAR data. The proposed selection criterion shows superior performance than the span-based selection criterion. Among the mixture model-based MRF classification algorithms, the proposed RWMM-MRFt algorithm has the highest classification accuracy, and the corresponding classification maps have better anti-noise performance.

Funder

National Natural Science Fund

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3