Abstract
Large-scale integration of PV generators in distribution grids will impair the voltage stability due to the stochastic and fluctuated PV power generation. To tame the volatile PV power generation, battery energy storage systems (BESS) are deployed as an effective yet expensive power buffering mechanism. In this paper, a dual ascent-based voltage optimization control is proposed to achieve the concurrent regulation of battery State-of-Charge (SoC), nodal voltages, and distribution loss. This control features the limited dependence on the communication network with information interaction between neighboring nodes. Besides, it can achieve the optimal power flow minimizing the distribution loss while maintaining the BESS SoC within a healthy range. The derivation of the control framework is provided, and comparative simulations in the IEEE 37-node distribution system are performed to validate the effectiveness of the proposed control algorithm.
Funder
National Natural Science Foundation of China and in part by the Environment and Conservation Fund & Woo Wheelock Green Fund
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献