A New Double-Layer Decentralized Consistency Algorithm for the Multi-Satellite Autonomous Mission Allocation Based on a Block-Chain

Author:

Cheng Fei,Ning Xin,Dong YunfengORCID

Abstract

The traditional on-board centralized-distributed mission negotiation architecture has poor security and reliability. It can easily give rise to the collapse of the whole system when the master node is attacked by malicious nodes. To address this issue, the decentralized consistency algorithms commonly used in the internet world are referred to in this paper. Firstly, four typical consistency algorithms suitable for the Internet and which are named RAFT, PBFT, RIPPLE and DPOS are selected and modified for a multi-satellite autonomous mission negotiation. Additionally, based on the above modified consistency algorithms, a new double-layer decentralized consistency algorithm named DDPOS is proposed. It is well known that the above four common consistency algorithms cannot have both a low resource occupation and high security. The DDPOS algorithm can integrate the advantages of four common consistency algorithms due to its freedom of choice attribute, which can enable satellite clusters to flexibly adopt different appropriate consistency algorithms and the number of decentralized network layers. The DDPOS algorithm not only greatly improves the security and reliability of the whole satellite cluster, but also effectively reduces the computing and communication resources occupation of the satellite cluster. Without the presence of a malicious node attack, the resource occupation of the DDPOS algorithm is almost the same as that of the RAFT algorithm. However, in the case of a malicious node attack, compared with the RAFT algorithm, the total computation and total bandwidth occupation of the DDPOS algorithm have decreased by 67% and 75%, respectively. Moreover, it is surprising that although the DDPOS algorithm is more complex, its code size is only about 8% more than the RAFT algorithm. Finally, the effectiveness and feasibility of the DDPOS algorithm in the on-board practical application are analyzed and verified via simulation experiments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3