Zoom-In Neural Network Deep-Learning Model for Alzheimer’s Disease Assessments

Author:

Wang BohyunORCID,Lim Joon S.

Abstract

Deep neural networks have been successfully applied to generate predictive patterns from medical and diagnostic data. This paper presents an approach for assessing persons with Alzheimer’s disease (AD) mild cognitive impairment (MCI), compared with normal control (NC) persons, using the zoom-in neural network (ZNN) deep-learning algorithm. ZNN stacks a set of zoom-in learning units (ZLUs) in a feedforward hierarchy without backpropagation. The resting-state fMRI (rs-fMRI) dataset for AD assessments was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The Automated Anatomical Labeling (AAL-90) atlas, which provides 90 neuroanatomical functional regions, was used to assess and detect the implicated regions in the course of AD. The features of the ZNN are extracted from the 140-time series rs-fMRI voxel values in a region of the brain. ZNN yields the three classification accuracies of AD versus MCI and NC, NC versus AD and MCI, and MCI versus AD and NC of 97.7%, 84.8%, and 72.7%, respectively, with the seven discriminative regions of interest (ROIs) in the AAL-90.

Funder

National Research Foundation of Korea

MSIT(Ministry of Science and ICT), Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Sutskever, I., and Martens, J. (, January June). On the importance of initialization and momentum in deep learning. Proceedings of the 30th International Conference on Machine Learning, JMLR Atlanta, GA, USA.

2. The recent excitement about neural networks;Nature,1989

3. Learning representations by back-propagating errors;Nature,1986

4. Schiess, M., Urbanczik, R., and Senn, W. (2016). Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites. PLoS Comput. Biol., 12.

5. Learning deep architectures for AI;Found. Trends Mach. Learn.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3