A Fault Detection Method for Electrohydraulic Switch Machine Based on Oil-Pressure-Signal-Sectionalized Feature Extraction

Author:

Meng QingzhouORCID,Wen Weigang,Bai Yihao,Liu Yang

Abstract

A turnout switch machine is key equipment in a railway, and its fault condition has an enormous impact on the safety of train operation. Electrohydraulic switch machines are increasingly used in high-speed railways, and how to extract effective fault features from their working condition monitoring signal is a difficult problem. This paper focuses on the sectionalized feature extraction method of the oil pressure signal of the electrohydraulic switch machine and realizes the fault detection of the switch machine based on this method. First, the oil pressure signal is divided into three stages according to the working principle and action process of the switch machine, and multiple features of each stage are extracted. Then the max-relevance and min-redundancy (mRMR) algorithm is applied to select the effective features. Finally, the mini batch k-means method is used to achieve unsupervised fault diagnosis. Through experimental verification, this method can not only derive the best sectionalization mode and feature types of the oil pressure signal, but also achieve the fault diagnosis and the prediction of the status of the electrohydraulic switch machine.

Funder

North University of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference34 articles.

1. Development of an effective condition monitoring system for AC point machines;Asada;Proceedings of the Railway Condition Monitoring & Non-destructive Testing,2011

2. SVM based diagnostics on railway turnouts;Eker;Int. J. Perform. Eng.,2012

3. Method on the fault detection and diagnosis for the railway turnout based on the current curve of switch machine;Mo;Proceedings of the 2nd International Conference on Mechanical Engineering, Industrial Electronics and Informatization, MEIEI 2013,2013

4. EANN 2014: a fuzzy logic system trained by conjugate gradient methods for fault classification in a switch machine

5. Set-Membership Type-1 Fuzzy Logic System Applied to Fault Classification in a Switch Machine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3