Low-Temperature Ethanol Sensor via Defective Multiwalled Carbon Nanotubes

Author:

Shaalan Nagih M.ORCID,Ahmed FaheemORCID,Rashad Mohamed,Saber OsamaORCID,Kumar ShalendraORCID,Aljaafari AbdullahORCID,Ashoaibi AdilORCID,Mahmoud Amera Z.,Ezzeldien Mohammed

Abstract

This paper focuses on the fabrication of defective-induced nanotubes via the catalytic chemical vapor deposition method and the investigation of their properties toward gas sensing. We have developed defective multi-walled carbon nanotubes with porous and crystalline structures. The catalyst layer used in CNTs’ growth here was based on 18 and 24 nm of Ni, and 5 nm of Cr deposited by the dc-sputtering technique. The CNTs’ defects were characterized by observing the low graphite peak (G-band) and higher defect peaks (D-band) in the Raman spectrum. The defectives sites are the main source of the sensitivity of materials toward different gases. Thus, the current product was used for sensing devices. The device was subjected to various gases such as NO, NO2, CO, acetone, and ethanol at a low operating temperature of 30 °C and a concentration of 50 ppm. The sensor was observed to be less sensitive to most gas while showing the highest response towards ethanol gas. The sensor showed the highest response of 8.8% toward ethanol at 30 °C of 50 ppm, and a low response of 2.8% at 5 ppm, which was investigated here. The signal repeatability of the present sensor showed its capability to detect ethanol at much lower concentrations and at very low operating temperatures, resulting in reliability and saving power consumption. The gas sensing mechanism of direct interaction between the gas molecules and nanotube surface was considered the main. We have also proposed a sensing mechanism based on Coulomb dipole interaction for the physical adsorption of gas molecules on the surface.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3