Effects of Processing Parameters on the Microstructure and Mechanical Properties of Nanoscaled WC-10Co Cemented Carbide

Author:

Wang Yu,Xiang Fengming,Yuan Xiaobo,Yang Biaobiao,Wang Fenglin,Li Yunping

Abstract

This work was mainly focused on the processing-parameter-related microstructure and properties of ultrafine WC-10Co-0.4VC-0.5Cr3C2 cemented carbide. The samples were prepared via a spark plasma sintering (SPS) technique using nano WC and Co powders and the corresponding inhibitor VC and Cr3C2 powders. The influence of the processing process on the microstructure and mechanical properties of ultrafine-grained cemented carbide was investigated under different ball-milling times and sintering temperatures. The results showed that the grain size of WC decreased with increasing ball-milling time and decreasing sintering temperature and that the specific gravity of ε-Co increased with increasing ball-milling time. The hardness of cemented carbide increased with increasing ball-milling time and decreased with increasing sintering temperature due to the corresponding variation in grain size and the relative density of samples. The transverse fracture strength (TRS) was mainly affected by ball-milling time. The increase in ball-milling time led to decreased TRS values, mainly ascribed to the formation of WC particle agglomeration and the decreased WC-Co eutectic temperature. In addition, temperature changes were found to have little effect on TRS. The samples sintered at 1250 °C with a ball-milling time of 60 h had comprehensive mechanical properties. Their average grain size, relative density, hardness, and TRS were 355.5 nm, 95.79%, 2035.5 kg/mm2, and 2155.99 MPa, respectively.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3