Effect of Different Laser Groove Texture Collation Frequency on Tribological Properties of 0Cr17Ni7Al Stainless Steel

Author:

Yang Liguang,Ma WensuoORCID,Gao Fei,Xi Shiping

Abstract

Laser surface texture is very effective in antifriction systems, but its applications and research in dry friction are not enough. In this study, the groove texture was prepared on the surface of 0Cr17Ni7Al stainless steel, a common material of sliding bearing, by nanosecond and femtosecond laser, respectively. The tribological properties of the two kinds of laser groove textures with different collision frequencies were studied in depth. The results show that the friction coefficients of groove texture prepared by nanosecond and picosecond lasers are lower than that of the untextured surface. The antifriction characteristics of the laser texture are very good. The average friction coefficient of nanosecond texture at the rotation radius of 15 mm is Z = 0.7318. The best friction-reducing effect is achieved. In general, the friction coefficient of nanosecond texture is lower than that of picosecond texture. When the friction radius is 22.5 mm and the number of collisions is 24,000, the lowest picosecond texture wear rate is H = 3.342 × 10−4 mm3/N·mm. However, when the radius is 15 mm and the collision frequency is 36,000 times, the wear rate of nanosecond texture reaches the highest H = 13.680 × 10−4 mm3/N·mm. The wear rate of the untextured surface has been exceeded. It can be seen that not all rotation radius textures are more wear-resistant than untextured surfaces. In addition, nanosecond groove texture and picosecond groove texture seem to produce different tribological properties. It is found that, under the same friction experimental conditions, different collision frequencies will affect the friction and wear properties of nanosecond and picosecond groove-textured surfaces.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3