The Bifactor Model Fits Better Than the Higher-Order Model in More Than 90% of Comparisons for Mental Abilities Test Batteries

Author:

Cucina Jeffrey,Byle Kevin

Abstract

The factor structure of mental abilities has most often been depicted using a higher-order model. Under this model, general mental ability (g) is placed at the top of a pyramid, with “loading” arrows going from it to the other factors of intelligence, which in turn go to subtest scores. In contrast, under the bifactor model (also known as the nested factors/direct hierarchical model), each subtest score has its own direct loading on g; the non-g factors (e.g., the broad abilities) do not mediate the relationships of the subtest scores with g. Here we summarized past research that compared the fit of higher-order and bifactor models using confirmatory factor analysis (CFA). We also analyzed additional archival datasets to compare the fit of the two models. Using a total database consisting of 31 test batteries, 58 datasets, and 1,712,509 test takers, we found stronger support for a bifactor model of g than for the traditional higher-order model. Across 166 comparisons, the bifactor model had median increases of 0.076 for the Comparative Fit Index (CFI), 0.083 for the Tucker-Lewis Index (TLI), and 0.078 for the Normed Fit Index (NFI) and decreases of 0.028 for the root mean square error of approximation (RMSEA) and 1343 for the Akaike Information Criterion (AIC). Consequently, researchers should consider using bifactor models when conducting CFAs. The bifactor model also makes the unique contributions of g and the broad abilities to subtest scores more salient to test users.

Publisher

MDPI AG

Subject

Cognitive Neuroscience,Developmental and Educational Psychology,Education,Experimental and Cognitive Psychology

Reference68 articles.

1. Standards for Educational and Psychological Testing,2014

2. Conventional wisdom on measurement: A structural equation perspective.

3. The Bi-factor method

4. A study in factor analysis: The stability of a bifactor solution;Holzinger,1939

5. Identifying g: A review of current factor analytic practices in the science of mental abilities

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3