Detection of Spatial Shift in Flood Regime of the Kabul River Basin in Pakistan, Causes, Challenges, and Opportunities

Author:

Mehmood Asif,Jia ShaofengORCID,Lv Aifeng,Zhu WenbinORCID,Mahmood RashidORCID,Saifullah MuhammadORCID,Adnan Rana MuhammadORCID

Abstract

Recent evidence of regional climate change impacts on hydrological cycle directed us to study the floods in a high elevated and rapidly urbanized river basin, the Kabul River basin (KRB), Pakistan, which is susceptible to frequent flooding. Therefore, we analyzed the changes in flood regime at various spatial and temporal scales and their possible causes, which is accomplished by using flood indicators, trend analysis, change point analysis, and hydrological modeling. The results showed that the northern and northwestern parts of the KRB were more exposed to flood hazard than the southern parts under long-term scenario (1961/64-2015). However, after the change points, the flood risk decreased in the northern and increased in the southern regions. This spatial shift increased the vulnerability of population to the flood hazard, because the majority of population resides in the southern region. The extreme precipitation has also increased, especially the maximum one-day rainfall and maximum five-day rainfall throughout the basin. Particularly, the major cause of the decrease in different flood indicators in the northern parts of the KRB is the corresponding decrease in the annual and monsoonal rainfall and corresponding positive mass balance of glaciers in the northern region after the occurrence of change point in flood regime. However, the major cause of the increase in flood hazard on the southern part of the KRB is associated with maximum five-day rainfall. A 68% variability of annual maximum flood for the Kabul River at Nowshera and an 84% variability of annual maximum flood for Bara River at Jhansi post are explained by maximum five-day rainfall. In addition, a considerable decrease in forests (–5.21%) and increase in the urban area (88.26%) from 1992–2015 also amplifies the risk of higher flood peaks. The results of hydrological modeling suggest that the six-hourly flood peak increased by 6.85% (1992–2010) and 4.81% (2010–2015) for the extreme flood of 2010 for the Kabul River at Nowshera. The flood peak per decade will increase by 8.6%, as compared to the flood peak under the land use scenario of 2010. Therefore, consideration of proper land use planning is crucial for sustainable flood management in the KRB.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3