An Eigenvector Centrality for Multiplex Networks with Data

Author:

Pedroche FranciscoORCID,Tortosa LeandroORCID,Vicent José F.ORCID

Abstract

Networks are useful to describe the structure of many complex systems. Often, understanding these systems implies the analysis of multiple interconnected networks simultaneously, since the system may be modelled by more than one type of interaction. Multiplex networks are structures capable of describing networks in which the same nodes have different links. Characterizing the centrality of nodes in multiplex networks is a fundamental task in network theory. In this paper, we design and discuss a centrality measure for multiplex networks with data, extending the concept of eigenvector centrality. The essential feature that distinguishes this measure is that it calculates the centrality in multiplex networks where the layers show different relationships between nodes and where each layer has a dataset associated with the nodes. The proposed model is based on an eigenvector centrality for networks with data, which is adapted according to the idea behind the two-layer approach PageRank. The core of the centrality proposed is the construction of an irreducible, non-negative and primitive matrix, whose dominant eigenpair provides a node classification. Several examples show the characteristics and possibilities of the new centrality illustrating some applications.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3