Analysis of the Influence of Initial Stress on the Bandgap Characteristics of Configuration-Controllable Metamaterials

Author:

Yao Fei1,Wang Jixiao2,Fu Qiang1,Zhang Hongyan1

Affiliation:

1. School of Science, Chang’an University, Xi’an 710064, China

2. China Nuclear Power Engineering Co., Ltd., Beijing 100089, China

Abstract

Configuration-controllable metamaterials are a kind of metamaterials whose bandgaps can be effectively adjusted through configuration control, but the configuration changes also produce initial stress. In this paper, the distribution of the initial stress of the configuration-controllable metamaterial under axial displacement and the influence of initial stress on the band gap characteristics of the structure were analyzed using numerical and experimental methods. The results show that initial stress has a significant influence on the bandgap characteristics, and the position and width of the bandgap change with the magnitude of the initial stress. The bandgap distribution of the structure after considering the initial stress is more consistent with the reported experimental results. The influence of initial stress on bandgap cannot be ignored. When the compressive loading displacement is 10 mm, the frequency range of the first bandgap is 262 Hz–310 Hz and that of the second bandgap is 394 Hz–405 Hz. And the frequency range of the first and second bandgaps will be converted into 254 Hz–291 Hz and 391 Hz–400 Hz when considering initial stress. The initial stress generated by compression deformation reduces the frequency of the structural bandgap. The beginning and ending frequencies of the first bandgap will move toward low frequencies, and the first bandgap will close when the compression displacement reaches 30 mm. The initial stress generated by tensile deformation increases the frequency of the structural bandgap. The beginning and ending frequencies of the first bandgap move toward high frequencies, and the bandgap will close when the tensile displacement is 30 mm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3