Research on Dynamic and Thermal Effects Based on the Calculation of the Short-Circuit Current in Low-Voltage DC Distribution Systems for Civil Buildings

Author:

Wei Qiang1,Ni Gaojun1,Feng Jianhua1,Ma Hao2

Affiliation:

1. The Architectural Design and Research Institute of Zhejiang University Co., Ltd., Hangzhou 310028, China

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

The verification of short-circuit effects is very important for ensuring the safety of equipment and power systems. Compared with that in alternating current (AC) systems, research on this issue in direct current (DC) systems is scarce, and it is urgently necessary to develop an accurate verification method for applications in DC systems. This research establishes an equivalent model of a pole–pole cable short-circuit according to the characteristics of low-voltage DC distribution systems in civil buildings. Through theoretical analysis and numerical simulation, the development process of a short circuit is summarized, and the methods of verifying dynamic and thermal effects based on the time-domain characteristics of the short-circuit current are specified. By calculating the peak value and Joule integral of the short-circuit current, in comparison with those in the IEC 61660 (1997) standard, this research points out that the method in the IEC 61660 (1997) standard is insufficient. Finally, the short-circuit peak current is greatly affected by the DC-link capacitance, the steady-state current is directly related to the filter inductance of the AC-link; and the verification of the thermal effect requires the calculation of the Joule integral in the transient and steady state.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3