φ-OTDR Based on Orthogonal Frequency-Division Multiplexing Time Sequence Pulse Modulation

Author:

Li Zhengyang1ORCID,Zhang Yangan1,Yuan Xueguang1ORCID,Xiao Zhenyu1,Zhang Yuan1,Huang Yongqing1

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

This study introduces an innovative phase-sensitive optical time-domain reflectometer (φ-OTDR) technology based on orthogonal frequency-division multiplexing (OFDM) and nonlinear frequency modulation (NLFM) pulse modulation sequences. The proposed approach addresses the inherent trade-offs among spatial resolution, frequency response range, and sensing distance that conventional φ-OTDR systems encounter. This method optimizes spatial resolution and sensing distance by modulating both the frequency and phase of optical pulses. Moreover, it enhances sidelobe suppression by adjusting the nonlinearity of frequency modulation, reducing interference between adjacent signals, and improving the signal-to-noise ratio (SNR). Additionally, orthogonal frequency-division multiplexing expands the frequency response range. This paper elucidates the fundamental principles and implementation of OFDM-NLFM time-domain pulse modulation techniques and designs, experimentally validates a φ-OTDR system based on this method, and conducts comprehensive testing and analysis of the system’s performance. The experimental results demonstrate that the proposed φ-OTDR system achieves an 11 m spatial resolution and a frequency response range of 1–10 kHz over a 16.3 km optical fiber, utilizing a 65 MHz frequency bandwidth with multiplexed signals across four frequencies. This innovative approach reduces hardware resource consumption, opening up promising prospects for various practical engineering applications in optical fiber sensing technology.

Funder

State Key Laboratory of Information Photonics and Optical Communications

The Funds for Creative Research Groups of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3