GLCM-Based FBLS: A Novel Broad Learning System for Knee Osteopenia and Osteoprosis Screening in Athletes

Author:

Chen Zhangtianyi1,Zheng Haotian1,Duan Junwei1,Wang Xiangjie23

Affiliation:

1. The College of Information Science and Technology, Jinan University, Guangzhou 510632, China

2. School of Physical Education, Jinan University, Guangzhou 510632, China

3. Subingtian Center for Speed Research and Training/Guangdong Key Laboratory of Speed-Capability Research, Guangzhou 510632, China

Abstract

Due to the physical strain experienced during intense workouts, athletes are at a heightened risk of developing osteopenia and osteoporosis. These conditions not only impact their overall health but also their athletic performance. The current clinical screening methods for osteoporosis are limited by their high radiation dose, complex post-processing requirements, and the significant time and resources needed for implementation. This makes it challenging to incorporate them into athletes’ daily training routines. Consequently, our objective was to develop an innovative automated screening approach for detecting osteopenia and osteoporosis using X-ray image data. Although several automated screening methods based on deep learning have achieved notable results, they often suffer from overfitting and inadequate datasets. To address these limitations, we proposed a novel model called the GLCM-based fuzzy broad learning system (GLCM-based FBLS). Initially, texture features of X-ray images were extracted using the gray-level co-occurrence matrix (GLCM). Subsequently, these features were combined with the fuzzy broad learning system to extract crucial information and enhance the accuracy of predicting osteoporotic conditions. Finally, we applied the proposed method to the field of osteopenia and osteoporosis screening. By comparing this model with three advanced deep learning models, we have verified the effectiveness of GLCM-based FBLS in the automatic screening of osteoporosis for athletes.

Funder

Civilized Guangzhou and Cultural Power Research Base 2023 research project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knee Osteoporosis Diagnosis Based on Deep Learning;International Journal of Computational Intelligence Systems;2024-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3