An Automated Parametric Surface Patch-Based Construction Method for Smooth Lattice Structures with Irregular Topologies

Author:

Fleig Luisa1ORCID,Hoschke Klaus1ORCID

Affiliation:

1. Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, 79104 Freiburg, Germany

Abstract

Additive manufacturing enables the realization of complex component designs that cannot be achieved with conventional processes, such as the integration of cellular structures, such as lattice structures, for weight reduction. To include lattice structures in component designs, an automated algorithm compatible with conventional CAD that is able to handle various lattice topologies as well as variable local shape parameters such as strut radii is required. Smooth node transitions are desired due to their advantages in terms of reduced stress concentrations and improved fatigue performance. The surface patch-based algorithm developed in this work is able to solidify given lattice frames to smooth lattice structures without manual construction steps. The algorithm requires only a few seconds of sketching time for each node and favours parallelisation. Automated special-case workarounds as well as fallback mechanisms are considered for non-standard inputs. The algorithm is demonstrated on irregular lattice topologies and applied for the construction of a lattice infill of an aircraft component that was additively manufactured.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3