Improving Energy Efficiency of Flexible Pneumatic Systems

Author:

Dudić Slobodan,Reljić VuleORCID,Šešlija DraganORCID,Dakić Nikolina,Blagojević VladislavORCID

Abstract

During pneumatic control system design, the critical value for choosing the appropriate pneumatic actuator is the weight of the workpiece. In the case of flexible production systems, which are the core part of the Industry 4.0 (I4.0) concept, the weight of the workpieces is often variable, since the crucial feature of this kind of production is its ability to deal with variable parts. Therefore, in order to deal with the variable weight of parts, a pneumatic actuator is chosen according to the heaviest part. However, according to another I4.0 principle, energy efficient operation of machines, the previous criteria for choosing a pneumatic actuator is energy efficient only when handling the heaviest part. In all other cases, operation of the pneumatic actuator is suboptimal in terms of energy efficiency. Aiming to solve this problem, this paper considers the possibility of using a new pressure regulator instead of traditional manually adjusted pressure regulators. This regulator provides operating pressure modification in real-time in accordance with the weight of the workpieces. In this way, the optimal compressed air consumption is ensured for each workpiece. Implementation of this device has yielded significant energy savings; however, the value is variable and depends on working task characteristics.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Pneumatik Elektropneumatik-Grundlagen;Ebel,2017

2. A review on compressed-air energy use and energy savings

3. Compressed Air Systems in the European Union, Energy, Emissions, Savings Potential and Policy Actions;Radgen,2001

4. Development of an Experimental Setup for Remote Testing Pneumatic Control

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3