Comparative Study about Dimensional Accuracy and Surface Finish of Constant-Breadth Cams Manufactured by FFF and CNC Milling

Author:

Zayas-Figueras Enrique E.1ORCID,Buj-Corral Irene1ORCID

Affiliation:

1. Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya (UPC), Av. Diagonal, 647, 08028 Barcelona, Spain

Abstract

In this work, the design, manufacture and measurement process of constant-breadth cams is presented. The motion law of the cam was designed by means of Bézier curves and the corresponding design desmodromic constraints. The cams were manufactured in two different materials employing two different processes: PLA cams with fused filament fabrication (FFF) and aluminium cams with computer numerical control (CNC) milling. The main aim of this work is to compare both types of cams regarding dimensional accuracy and surface finish, in order to evaluate if it would be possible to temporally replace a metallic cam with a plastic one during the repair of the first one. Dimensions were measured with micrometres and surface roughness with a contact roughness meter. The results show that, in diametral dimensions, similar dimensional error values were obtained for both the 3D-printed and the machined cams. However, in longitudinal dimensions, whose direction is perpendicular to the 3D-printed layers, the 3D-printed cams showed higher dimensional error than the machined ones. The average roughness Ra in the 3D-printed cams was 20 times higher than in the milled cams. According to the results, it would be recommended to temporally replace metallic cams with plastic ones in applications of low-power transmission. Given that in the literature little information is available about the measurement of 3D-printed desmodromic cams, this work will contribute to the study and analysis of this kind of 3D printed mechanism.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference37 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3