Moisture Transfer and Formation of Separate Ice in the Freezing Process of Saturated Soils

Author:

Chen Peishuai,Luo Huiwu,Liu EnlongORCID

Abstract

The formation and layer of ice lenses during the freezing of soil in cold regions is closely related to frozen heave and moisture immigration. The purpose of the paper is to explain the physical mechanisms pertaining to ice lens formation, which were analyzed and verified using numerical simulation results. Based on a few assumptions, the formation and layers of ice lenses are illuminated in the following steps: the initial stage of freezing, formation of the first layer of ice lens, formation of the second layer of ice lens, and formation of the final layer of ice lens. Compared with the numerical results of coupled thermo–hydro–mechanical simulations of one-side freezing of soil columns in an open system, the proposed analysis method of the formation and layers of ice lenses is verified to be reasonable, and it is demonstrated that the classical criterion for the formation of ice lens in freezing saturated soil is only suitable for the final layer of ice lens. Finally, a new criterion, in terms of flux rate, for the formation of ice lens is proposed.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference26 articles.

1. Physics of Frozen Soil;Xu,2010

2. The segregation potential of a freezing soil

3. Lens initiation in secondary heaving. Proceedings of the International Symposium on Frost;Miller;Action Soils,1977

4. A mechanistic theory of ice lens formation in fine-grained soils

5. A model for the prediction of ice lensing and frost heave in soils

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3