Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element Analysis and Neural Networks Approaches

Author:

Alwattar Tahseen,Mian AhsanORCID

Abstract

Lattice cell structures (LCS) are being investigated for applications in sandwich composites. To obtain an optimized design, finite element analysis (FEA) -based computational approach can be used for detailed analyses of such structures, sometime at full scale. However, developing a large-scale model for a lattice-based structure is computationally expensive. If an equivalent solid FEA model can be developed using the equivalent solid mechanical properties of a lattice structure, the computational time will be greatly reduced. The main idea of this research is to develop a material model which is equivalent to the mechanical response of a lattice structure. In this study, the mechanical behavior of a body centered cubic (BCC) configuration under compression and within elastic limit is considered. First, the FEA approach and theoretical calculations are used on a single unit cell BCC for several cases (different strut diameters and cell sizes) to predict equivalent solid properties. The results are then used to develop a neural network (NN) model so that the equivalent solid properties of a BCC lattice of any configuration can be predicted. The input data of NN are bulk material properties and output data are equivalent solid mechanical properties. Two separate FEA models are then developed for samples under compression: one with 5 × 5 × 4 cell BCC and one completely solid with equivalent solid properties obtained from NN. In addition, 5 × 5 × 4 cell BCC LCS specimens are fabricated on a Fused Deposition Modeling uPrint SEplus 3D printer using Acrylonitrile Butadiene Styrene (ABS) and tested under compression. Experimental load-displacement behavior and the results obtained from both the FEA models are in good agreement within the elastic limit.

Publisher

MDPI AG

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3