How to Use Heart Rate Variability: Quantification of Vagal Activity in Toddlers and Adults in Long-Term ECG

Author:

Lackner Helmut KarlORCID,Eglmaier Marina Tanja Waltraud,Hackl-Wimmer Sigrid,Paechter Manuela,Rominger ChristianORCID,Eichen LarsORCID,Rettenbacher Karoline,Walter-Laager Catherine,Papousek IlonaORCID

Abstract

Recent developments in noninvasive electrocardiogram (ECG) monitoring with small, wearable sensors open the opportunity to record high-quality ECG over many hours in an easy and non-burdening way. However, while their recording has been tremendously simplified, the interpretation of heart rate variability (HRV) data is a more delicate matter. The aim of this paper is to supply detailed methodological discussion and new data material in order to provide a helpful notice of HRV monitoring issues depending on recording conditions and study populations. Special consideration is given to the monitoring over long periods, across periods with different levels of activity, and in adults versus children. Specifically, the paper aims at making users aware of neglected methodological limitations and at providing substantiated recommendations for the selection of appropriate HRV variables and their interpretation. To this end, 30-h HRV data of 48 healthy adults (18–40 years) and 47 healthy toddlers (16–37 months) were analyzed in detail. Time-domain, frequency-domain, and nonlinear HRV variables were calculated after strict signal preprocessing, using six different high-frequency band definitions including frequency bands dynamically adjusted for the individual respiration rate. The major conclusion of the in-depth analyses is that for most applications that implicate long-term monitoring across varying circumstances and activity levels in healthy individuals, the time-domain variables are adequate to gain an impression of an individual’s HRV and, thus, the dynamic adaptation of an organism’s behavior in response to the ever-changing demands of daily life. The sound selection and interpretation of frequency-domain variables requires considerably more consideration of physiological and mathematical principles. For those who prefer using frequency-domain variables, the paper provides detailed guidance and recommendations for the definition of appropriate frequency bands in compliance with their specific recording conditions and study populations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3