Multiple Explainable Approaches to Predict the Risk of Stroke Using Artificial Intelligence

Author:

S Susmita1,Chadaga Krishnaraj2ORCID,Sampathila Niranjana1ORCID,Prabhu Srikanth2ORCID,Chadaga Rajagopala3,S Swathi Katta4ORCID

Affiliation:

1. Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

2. Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

3. Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

4. Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, India

Abstract

Stroke occurs when a brain’s blood artery ruptures or the brain’s blood supply is interrupted. Due to rupture or obstruction, the brain’s tissues cannot receive enough blood and oxygen. Stroke is a common cause of mortality among older people. Hence, loss of life and severe brain damage can be avoided if stroke is recognized and diagnosed early. Healthcare professionals can discover solutions more quickly and accurately using artificial intelligence (AI) and machine learning (ML). As a result, we have shown how to predict stroke in patients using heterogeneous classifiers and explainable artificial intelligence (XAI). The multistack of ML models surpassed all other classifiers, with accuracy, recall, and precision of 96%, 96%, and 96%, respectively. Explainable artificial intelligence is a collection of frameworks and tools that aid in understanding and interpreting predictions provided by machine learning algorithms. Five diverse XAI methods, such as Shapley Additive Values (SHAP), ELI5, QLattice, Local Interpretable Model-agnostic Explanations (LIME) and Anchor, have been used to decipher the model predictions. This research aims to enable healthcare professionals to provide patients with more personalized and efficient care, while also providing a screening architecture with automated tools that can be used to revolutionize stroke prevention and treatment.

Publisher

MDPI AG

Subject

Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3