Triboelectric Nanogenerators for Preventive Health Monitoring

Author:

Gao Mang1ORCID,Yang Zhiyuan2ORCID,Choi Junho3ORCID,Wang Chan45ORCID,Dai Guozhang1ORCID,Yang Junliang1

Affiliation:

1. School of Physics, Central South University, Changsha 410083, China

2. Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan

3. Department of Mechanical Engineering, Tokyo City University, Tokyo 158-8557, Japan

4. Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore

5. Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore

Abstract

With the improvement in life quality, the increased focus on health has expedited the rapid development of portable preventative-health-monitoring devices. As one of the most attractive sensing technologies, triboelectric nanogenerators (TENGs) are playing a more and more important role in wearable electronics, machinery condition monitoring, and Internet of Things (IoT) sensors. TENGs possess many advantages, such as ease of fabrication, cost-effectiveness, flexibility, material-selection variety, and the ability to collect low-frequency motion, offering a novel way to achieve health monitoring for human beings in various aspects. In this short review, we initially present the working modes of TENGs based on their applications in health monitoring. Subsequently, the applications of TENG-based preventive health monitoring are demonstrated for different abnormal conditions of human beings, including fall-down detection, respiration monitoring, fatigue monitoring, and arterial pulse monitoring for cardiovascular disease. Finally, the discussion summarizes the current limitations and future perspectives. This short review encapsulates the latest and most influential works on preventive health monitoring utilizing the triboelectric effect for human beings and provides hints and evidence for future research trends.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3