Effect of Operating Parameters on Efficiency of Swash-Plate Type Axial Piston Pump

Author:

Kauranne Heikki

Abstract

In an effort to improve the energy economics of hydraulic systems, attention should be paid to reducing power losses in two main entities, energy converting components, and energy controlling and conveying components. Achieving the former requires utilizing components’ most energy efficient operating range. The energy converting efficiency of a pump, which is the primary energy converter in a hydraulic system, is determined by several operational factors. Of these, only pressure and rotational speed are normally considered, but also the fluid temperature and derived capacity with variable displacement pumps have a major effect on the efficiency. Omitting these factors may lead to running the pump outside its most efficient operation range and cause high energy losses. Operating the pump in its optimal region calls, however, for detailed knowledge of its performance characteristics, which are not generally made public by the pump manufacturers. This study presents the performance measurement results of a variable displacement axial piston pump in the form of efficiencies as a function of pressure, rotational speed, derived capacity and inlet fluid temperature. The results show that all of these factors have a significant impact on pump’s energy conversion efficiency and should, therefore, be taken into account when operating a hydraulic pump.

Funder

Business Finland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference11 articles.

1. Performance of Hydrostatic Machines. Extensive Measurement Report. Innas BVhttps://www.google.com/search?client=firefox-b-d&q=1.+Performance+of+hydrostatic+machines.+Extensive+measurement+report

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3