Dissolution of Palladium Metal in Solvent Leaching System with the Presence of Oxidizing Agent

Author:

Nguyen Viet Nhan Hoa,Song Si JeongORCID,Lee Man SeungORCID

Abstract

Platinum group metals (PGMs) are important for the manufacture of advanced materials in the field of catalysts and electronic devices. Since the chemical properties of PGMs are very similar to each other, hydrometallurgical processes should be employed to recover PGMs with high purity from either ores or secondary resources. In hydrometallurgical processes for PGMs, the first step is the dissolution of PGMs. For this purpose, inorganic acid solutions with oxidizing agents are generally employed. In this work, nonaqueous solvent leaching systems with a relatively cheap price were employed to investigate the dissolution of pure palladium (Pd) metal. The solvent leaching systems consisted of concentrated hydrochloric acid solution and commercial extractants such as tributyl phosphate (TBP), 7-hydroxydodecan-6-one oxime (LIX 63), and di-n-octyl sulfide (DOS) in the presence of H2O2 as an oxidizing agent. Among the three systems, TBP showed the best efficiency for the dissolution of Pd. The effect of several parameters like TBP concentration, temperature, time, stirring speed and the weight ratio of Pd to TBP/HCl/H2O2 was explored. The dissolution percentage of Pd by the HCl–H2O2–TBP system was higher than by the HCl–H2O–H2O2 system at the same concentration of HCl and H2O2. The role of TBP in enhancing the dissolution of Pd was discussed on the basis of the interaction between HCl and TBP. Compared to aqueous systems, mass transfer is important in the dissolution of Pd metal by the solvent leaching system. Optimum conditions for the complete dissolution of Pd were obtained.

Funder

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3