Author:
Chen Zhou,Jiang Yibo,Tong Zheming,Tong Shuiguang
Abstract
Surface fatigue wear widely exists, and it occurs as long as a sufficient number of loading–unloading cycles are applied. Slowing down surface fatigue wear requires understanding the evolution of fatigue damage in the surface. Real surfaces are composed of many asperities; therefore, it is important to study the fatigue damage of a single asperity. A finite element model of an asperity subjected to cyclic elastic–plastic normal loading was developed under frictionless contact condition. The asperity can be either completely or partially unloaded in a loading cycle. For the sake of completeness, both cases were investigated in the present study. The multiaxial Fatemi-Socie fatigue criterion was adopted to evaluate the fatigue damage of the asperity in elastic shakedown state, which was achieved after several loading cycles. For the case of complete unloading, severe fatigue damage was confined in a subsurface ridge starting from the edge of the maximum loaded contact area. The shape and volume of the wear particles were predicted based on a fundamentally valid assumption. For the case of partial unloading, the fatigue damage was much milder. Finally, potential research directions to expand the current study are suggested.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献